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ABSTRACT

Fatigue response in high strength powder metallurgy aluminum alloys is
being evaluated; the primary objective is to establish and understand
processing-microstructure-fatigue integrity relationships. The program
includes stress-controlled low and high cycle response and a determination
of crack propagation rates in both air and saline environments. In scope,
there are two concurrent phases of research; in one, the combined effects
of powder processing mode and cobalt level (0, 0.4, 0.8%) on fatigue are
examined while in the other, cobalt level is kept constant (0.4%Z) but the
powder alloy is processed to give differing but known/controlled levels of
deformation (material flow) by forging. S-N curves for axial fatigue (R g)f(ﬁpt*— i
0.1) in air reveal a strong influence of crocessing mode on life in alloys
containing cobalt. Anisotropy in fatigue response is observed for each
condition of cobalt level and processing ‘'de examined; the degree of
anisotropy is a function of processing mode if cobalt is present.Teromparison
with ingot metallurgy material confirms that the fatigue strength of\EF!\pgz?er
processed alloys is equal to or superior than that of the corresponding 1ngo£\\\~‘
metallurgy material. Microstructural characterization of fatigue damage is in
progress in order to rationalize fatigue response as a function of composition
and mode of processing. Plane strain forrings at a fixed cobalt level (0.4%)
have been processed to provide a range of strain (flow) levels, and fatigue

specimens (S-N and da/dn) cut from the forgings at selected locations.

—

ACCESSION tor
“NIIS White Section
nne putt Section
NANNOINC O 0
— B ;
\ — ST 10
¥
\ BY
| DISTRIBUTIONAVA ARIITY 00208
d Dist 0 SPEOIAL
S




- TABLE OF CONTENTS

Page
INTRODUCTION 1
BACKGROUND 2
(1) Stress-Cycling
i (i1) Fatigue Crack Propagation 2
EXPERIMENTAL PROCEDURE 3
(1) Phase I
(i) Phase II 4
RESULTS AND DISCUSSION 2
(1) Phase I
(11) Phase II
SUMMARY 9
REFERENCES 10
TABLES 11
FIGURES 12
PERSONNEL 22
: PUBLICATIONS/DISSERTATIONS 22
COUPLING ACTIVITIES 22
i
L .

P o
L)

Py e ey

P T .




INTRODUCTION

Fully-dense powder processed materials exhibit attractive mechanical
property levels. In consequence, this powder metallurgy (P/M) technology
is emerging as a direct competitor to conventional ingot metallurgy approaches. é
Apart from possible economic benefits, these P/M processed materials exhibit
{ finer and more homogeneous microstructures than ingot metallurgy materials.
Of direct interest and importance to the Air Force are aluminum and titanium
alloys for airframes and nickel-base superalloys in engine applications.
Properties of primary importance are strength, fatigue resistance, toughness,
creep resistance and stress-rupture.
Adequate strength and ductility are achieved at full-density. In
contrast, dynamic response (fatigue resistance or toughness) is dependent
on the mode of densification. Thus, in the forging of a powder preform, ‘
lateral flow of the material during densification (as opposed to repressing
with constraint on material flow) is necessary in order to promote dynamic

property levels comparable to those of cast and wrought material.(l—3)

The
effect is rationalized in terms of integrity of particle bonding; shearing

L. ruptures oxide or other contaminant films thereby allowing virgin metal

contact and a sound mechanical bond across collapsed pore interfaces.
Much of the research on P/M processing to full-density has been concerned
i with ferrous compositions. Recent work however, on high-strength powder-

(4=7) While a

processed aluminum alloys has indicated a similar potential.
]. detailed and basic understanding of processing-microstructure-mechanical

property relationships has been developed for ferrous P/M compositions, such

==

is not the case for the aluminum allovs. The goal of this program is to

develop a basic understanding of processing-microstructure mechanical property
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relationships in P/M processed high-strength aluminum alloys - with particular
reference to the fundamentals of response to cyclic loading. Specific
areas of study in this program include:
+ the relationships between fatigue behavior (high and low cycle
response; da/dn), microstructure and alloy chemistry in powder

processed high-strength aluminum alloys

* the influence of processing history upon both the fatigue initiation
and propagation processes, with particular reference to material

anisotropy

* the effect(s) of environment on high and low cycle response and

crack propagation (da/dn) rates.

BACKGROUND

(1) Stress-Cycling

Buchovecky and Rearick(s) confirmed the beneficial effect of
lateral flow on the fatigue resistance of powder-forged fully-dense compositions
equivalent to ingot metallurgy 2014 and 6061l. Endurance limits in rotating
bend fatigue (R = -1) were comparable to those of the wrought counterpart.
No attempt was made to relate microstructure to fatigue response, or to
characterize fatigue damage as a function of number of load cycles.

)

Lyle and Cebulak(g) and more recently Cebulak et al. demonstrated
integrity under cyclic loading in P/M compositions equivalent to the 7075
ingot metallurgy material. S-N curves of the fully-dense material matched or

exceeded those of ingot metallurgy material in notched axial fatigue testing;

enhancement in the endurance limit of up to 40% was also reported. No

correlation with microstructure was attempted.
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(11) Fatigue Crack Propagation
(5,0)

otto studied the influence of alloy composition and processing
history on fatigue crack propagation behavior in high-strength 7xxx allovs
fabricated from prealloyed atomized powders. Processing routes were identified
which appeared to result in crack growth rates considerably lower than those

of the corresponding ingot metallurgy material. Response to crack propagation
was a function of alloy composition, processing mode and environment.

Corbly(7) observed crack growth retardation due to various levels of peak

overload. Plastic zone size was measured and the behavior analvzed in terms

of an effective stress-intensity concept.

EXPERIMENTAL PROCEDURE

The fatigue study involves two concurrent phases. Alloyv composition

and mode of deformation are varied in Phase 1. 1In Phase 11, the objective
is to evaluate the role of deformation level/mode at a fixed alloy

composition.

(1) Phase I

Allovs used in Phase I were obtained from Alcoa; they were taken

(5)

from the same powder processed forgings used by Otto Alloy compositiouns

are listed in Table I; the MAS7 alloyv has a nominal cobalt content of 0.4%.
The major difference between MA87 and 7075 is in the replacement of Cr by
Co. The latter introduces a fine dispersion of C02A19 which acts as a
strengthener and inhibits grain growth, both of which appear to improve
stress corrosion resistance,

The prealloved (air atomized) powder had an average particle diameter
vidum. After cold isostatic pressing to 70% theoretical density, the material
was hot compacted to full density at 520°C. The compacted billets were then

hot upset and open die-forged at 370°C in two modes, Figure 1.

w3
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In the A mode, a single upset preceded the draw (hand forging operation);

in the ABC mode, the hot compacted billet was given a triple upset prior to
the draw. Fiducial orientation directions (L, LT and ST) are superimposed on
Figure 1. The above is not a true powder preform forging operation since the
material is already at full demnsity when forged. Material was solution heat-
treated and aged to a tensile strength in the range 515 to 565 MPa.

Hour glass-shaped fatigue specimens were machined from the A and ABC
processed material at the 0, 0.4 and 0.82 cobalt levels and in each of the
three orientations, i.e., L, LT and ST. The minimum diameter in the curved
gauge section was 3.175 mm. Specimens were mechanically polished with
Linde B A1203 and given a final electropolish in a perchloric/acetic acid
solution. To-date, tension-tension axial fatigue tests (R = 0.1; v = 30 Hz)

have been run in air.

(ii) Phase II
In this phase of the program, all fatigue testing is to be
carried out on the MA87 alloy. To this end, a powder billet was hot
compacted to full density at the Alcoa Technical Center. This material
constitutes the '"zero-deformation" condition. Preforms cut from the billet
were hot forged by compressing in plane strain with height reductions of
1.5:1 and 2:1 respectively.

In any forging operation that involves friction, the deformation is
inhomogeneous. Therefore visioplasticity is being used to determine the
deformation distribution in the final forgings. This will permit excising
of fatigue specimens of known local deformation. The visioplastic technique
involved splitting the preform in a vertical plane (containing the axis of
compression and direction of lateral flow) and scribing a grid network

(10 mm squares) on the cut (internal) faces. Grid dimensions were then

e




Z measured after forging to calculate the local strains. A total of twenty
preforms have been hot forged at 288°C. The forgings were subsequently

solution-treated and aged as in Phase I.

RESULTS AND DISCUSSION

(1) Phase I
Optical micrographs illustrating the grain structure in planes
perpendicular to the L, LT and ST directions are compared in Figures 2, 3

\

and 4; Keller's etch was used to delineate grain morphology. These cover

each of the six conditions examined, i.e., three cobalt levels and two

modes of deformation at each level. Anisotropy of the grain structure is
evident with grain elongation parallel to the draw (forging) direction, L,

as expected. At this level of resolution no systematic differences have been
established as a result of cobalt level and/or processing mode in planesl
perpendicular to L and ST. In‘genetal, the grains are equiaxed in the L-LT
plane in all six conditions. Grain size is extremely inhomogenecus, varying
from ~2 to 20um, which is significantly smaller than that of the ingot
metallurgy counterpart. Occasionally, original powder particles (13um dia.)
could be identified. A more detailed characterization of the grain structure
will be made utilizing transmission electron microscopy; this will enabl2 the

Co.,Al9 and oxide particle distributions to be determined - and in turn

- correlated with fatigue response. A similar characterization of microstructure

1' in powder-processed alloys is being conducted at AFML and comparisons will

e be made with their observations. i%
i. In the first year of the program, axial fatigue testing has been ﬁ

carried out in air. S-N curves are shown in Figures 5, 6 and 7; these are

=

arranged in pairs (i.e. 5(a) and 5(b), etc.) in order to compare the |

]

L
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effects of processing mode for each of the three levels of cobalt. The
legends in the figures (L, LT and ST) refer to the direction of cvelic
axial loading. For a fixed mode of processing (i.e. A or ABC), the effect
of cobalt level i{s seen by comparing Figures 5(a), o(a) and 7(a) or
Figures 5(b), o(b) and 7(b). In Figure § the effect of cobalt level and
processing mode are compared for a fixed orientation (L). éinally. Figure 9
compares the effect of processing mode and specimen orientation at a fixed
level of cobalt (0.8%).

In the cobalt-tree allov there is little effect of processing mode on
l =N behavior, cf. Figures 5(a) and 5(b). However, with 0.«% and 0.8% Co

additions, processing mode does influence fatigue response; ABC processing

gives superior S=N pertormance compared to the A processing mode, the effect
being most proncunced at the higher (0.8%) cobalt level, ctf. Figure o(a)
with o(db) and Figure 7(a) with 7(b). The elfect is seen clearly in the
longitudinal orientation (L) from a comparison of Figures S(a) and 8(b).
From these observations it can be concluded that best S=N performance in
air {s associated with a combination of cobalt additions and ABC processing.
Anisotropy in fatigue response is observed in each of the six combinatiouns
of cobalt level and processing mode: in each condition, tfatigue strength

increases in the order LT to ST to L. The degree of anisotropy between the

. L, LT and ST directions is relatively independent of cobalt content for A

processing, cf. Figures 5(a), o(a) and 7(a). For ABC processing, the

& - ———

degree of anisotropv increases with increasing cobalt content, cf. Figures
5(b), o(d) and T(b). ABC processing of the allov containing 0.8% Co gives
the best S=N response in each orientation; however this combination of cobalt

content and processing mode maximizes anisotropy.
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The fatigue data have also been normalized in terms of tensile strength
(e, cma‘/UTS)‘ While this gives risc¢ to small relative shifts butween the

S=N curves, the generalizations and trends outlined above still hold. A

comparison of tne present fatigue data with that of ingot metallurgy 7075-
T73 in axial fatigue at 105 cycles shows the general superiority of the
powder processed alloys (10). In strain-controlled fatigue, Staley (1l)
has observed a similar fatigue response, measured in terms of life to crack
initiation, for P/M 7XXX-T7, P/M 7XXX+o-T7, and ingot metallurgy 7475-To
between \-103 and 104 strain cvcles. Below and above this cycle range,

the powder processed allovs were superior.

Currently axial fatigue tests (in air) are being run in the low-
cycle regime, i.e. at stress amplitudes giving failure in <10& cvcles. In
the second vear of the program, low and high-cvcle stress-controlled axial
fatigue will be evaluated in a salt enviromment for the powder-processed
alloys in each of the six combinations of cobalt level and processing mode.
Concurrently, a svstematic study of crack propagation behavior will be
initiared.

A detailed microstructural evaluation of fatigue damage in axial
fatigue has been initiated and will continue in consort with the various
phases of the fatigue testing program. Development of fatigue damage on the
free surface is being monitored by optical and scanring electron microscopy.
Surface replication techniques are also under evaluation. To characterize
fracture surface morphology, a combination of optical and scanning microscopy
is in use. Dislocation substructures developed in the fatigue process will
be followed by means of transmission electron microscopv. To date, fracto-
Sraphic observations have revealed matrix shear and striations characteristic

of the fatigue process. The goal of the total microstructural study is to




seek out differences in structure as a function of the combination of
cobalt content and processing mode and to r. late these differences to
fatigue response. Since the material is available in the hot compacted
condition (i.e. prior to any forging) this will serve as a 'base-line' for

both microstructure and fatigue response.

(ii) Phase II
Visioplasticity observations have been made using the split preform

technique. Distortion of the original 10mm square grid during plane strain
forging is illustrated in Figure 10. Here the axis of compression is vertical
and the axis of lateral flow horizontal; there is no flow of material in the
direction perpendicular to the plane of the figure. Average and local plastic
strains were calculated from the grid displacements and the results are
summarized in Table II; the zero strain preform serves as a base-line. It
is clear from the table that large strain variations exist across the forged
preform such that the local strains overlap for the two preforms. Local
deformation levels (true strains) of 0, 0.3, 0.6 and 0.7 have been selected
for the fatigue study, Table II. Thus, the 0.6 strain level will be evaluated
for both of the upset conditions.

Preparation of specimens for axial fatigue testing in the L, LT and ST
orientations is in progress; these are being cut from the forged preforms at
locations where the local strain levels are 0, 0.3, 0.6 and 0.7 respectively.
Microstructures associated with these differing levels of deformation are
currently being characterized. Similarly, specimens for the crack propagation
study will be cut from the forged preforms to give a spectrum of strain levels.
The overall size of the forgings mandates the use of a subsize test specimen.
Crack propagation tests will first be run to see if the da/dn data correlate

with values obtained using a standard compact specimen.

alfe




SUMMARY

* The cobalt-free high-strength powder metallurgy alloys show little

effect of processing mode on axial S-N response in air.

i * Processing mode influences axial S-N response in air with cobalt l
levels of 0.4 and 0.8%. ABC processing gives better fatigue
resistance than A processing; the effect is most pronounced at the

higher cobalt level.

+ Anisotropy in fatigue response is observed for each condition of
cobalt level and processing mode examined. Fatigue life increases

in the order long transverse to short transverse to longitudinal

orientation.

* The degree of anisotropy is relatively independent of cobalt content for

A processing. For ABC processing, the degree of anisotropy increases

with increasing cobalt content. At a fixed cobalt level, ABC processing

gives a higher degree of anisotropy than A processing.

* Comparison with ingot metallurgy fatigue data shows the general superiority

of the powder processed aluminum alloys.

* Microstructural evaluation and characterization of fatigue damage is in

progress in order to rationalize the effect of composition and processing

[
L]

mode on fatigue response.

[ S
. ]

* Plane strain powder forgings of controlled flow level have been processed

at a fixed cobalt content (0.8%). Local strain variations have been

-

determined by visioplasticity and specimens for fatigue testing (S-N and

da/dn) cut from the forgings at selected locations to give a known

spectrum of strains (levels of flow).
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Table I

Composition of Atomized Powders (5)

wt.2
_Si Fe Cu Mg _2Zn_ Co Al
0.05 0.07 1.44 2.33 6.62 0 balance
0.05 0.09 1.53 2.44 6.38 0.33 balance
0.06 0.05 1.42 2.40 6.73 0.79 balance
Table II

Range of Strains Measured in Plane Strain Forgings

Original Local True Strain
Preform Height (mm) Average €h Range (el) € for Testing
114.3 0.4 0.1 to 0.8 0.3 and 0.6
150.4 0.7 0.3 to 1.27 0.6 and 0.7
76.2 0 0 0

1
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Figure 1. The two 'upset and draw' modes of deformation
performed on hot compacted powder billets (5).
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» Figure 2. Microstructure of upset and drawn billets; 0% Co.
(a) A process; (b) ABC process.
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Figure 3. Microstructure of upset and drawn billets; 0.4% Co.
(a) A process; (b) ABC process.,
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Figure 4. Microstructure of upset and drawn billets: 0.8X Co.
(a) A process: (b) ABC process.
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